SAPTARSHI

JEE/NEET-2014 : Physics

Marks – 120

Time: 1 Hour

Note: For each wrong answer, 1/4th mark will be deducted.

- Two particles are released from the same height at an interval of 1s. How long after the first particle beings to fall will the two particles be 10 m apart? (g = 10 ms⁻²)
 - a) 1.5 s *
 - b) 2 s
 - c) 1.25 s
 - d) 2.5 s
- 2) A car moves from X to Y with a uniform speed V_u and returns to Y with a uniform speed V_d . The average speed for this round trip is
 - a) $\frac{2V_d V_u}{V_d + V_u} *$
 - b) $\sqrt{V_u V_d}$ $V_d V_u$

c)
$$\frac{u}{V_d + V_u}$$

d) $\frac{V_u + V_d}{2}$

3) A juggler maintains four balls in motion, making each of them to rise a height of 20 m from his hand. What time interval should be maintained for the proper distance between them? (g = 10 ms⁻²)
a) 3 s

- b) $\frac{3}{2}s$ c) 1 s*
- 1) 0
- d) 2 s
- 4) A man throws balls with the same speed vertically upwards one after the other at an interval of 2 s. What should be the speed of the throw so that more than two balls are in the sky at any time? (g = 10 ms⁻²)
 - a) Any speed less than $19.6ms^{-1}$
 - b) Only with speed $19.6ms^{-1}$
 - c) More than $19.6ms^{-1}*$
 - d) At least $9.8ms^{-1}$
- 5) The acceleration –time-graph of a particle moving in a straight line is as shown in figure. The velocity of the particle at time t = 0 is $2ms^{-1}$. The velocity after 2 s will be

b)
$$4ms^{-1}$$

- c) $2ms^{-1}$
- d) $8ms^{-1}$
- A rocket is projected vertically upwards, whose graph is shown. The maximum height attained by the rocket is :

- a) 1 km
- b) 10 km
- c) 20 km
- d) 60 km *
- 7) A person is moving eastward with a speed of $5ms^{-1}$ and in 10s, the speed changes to $5ms^{-1}$ northwards. The average acceleration will be :

a) Zero
b)
$$\frac{1}{\sqrt{2}}ms^{-2}$$
 towards $N-W$ *
c) $\frac{1}{2}ms^{-2}$ towards $N-W$
d) $\frac{1}{2}ms^{-2}$ towards $N-E$

- 8) A ball is projected upwards from the foot of a tower. The ball crosses the top of the tower twice after an interval of 6 s and the ball reaches the ground after 12 s. The height of the tower is ($g = 10 \text{ ms}^{-2}$)
 - a) 120 m
 - b) 135 m *
 - c) 175 m
 - d) 80 m

- 9) A ball is dropped from the roof of a tower of height h. The total distance covered by it in the last second of its motion is equal to the distance covered by it in first 3 s. The value of h in meter is (g = 10 ms⁻²)
 - a) 125*
 - b) 200
 - c) 100
 - d) 80
- A body is moving in a straight line as shown in velocity –time graph. The displacement and distance traveled by body in 8 s are respectively

- a) 12 m, 20 m *
- b) 20 m, 12 m
- c) 12 m, 12 m
- d) 20 m, 20 m
- 11) The velocity of a particle at an instant is $10ms^{-1}$.

After 3 s its velocity will become $16ms^{-1}$. The velocity at 2 s before the given instant , will be

- a) $6ms^{-1}*$
- b) $4ms^{-1}$
- c) $2ms^{-1}$
- d) $1ms^{-1}$
- 12) A particle moves along a straight line OX. At a time t (in second) the distance x (in meter) of the particle from O is given by $x = 40 + 12t t^3$ How

long would the particle travel before coming to rest?

- a) 24 m
- b) 40 m
- c) 56 m*
- d) 16 m
- 13) Two bodies A (of mass 1 kg) and B (of mass 3 kg) are dropped from heights of 16m and 25m, respectively. The ratio of the time taken by them to reach the ground is
 - a) 5/4
 - b) 12/5
 - c) 5/12
 - d) 4/5*
- 14) The displacement of particle is given by

$$x = a_0 + \frac{a_1 t}{2} - \frac{a_2 t^2}{3}$$
 what is its acceleration?
a) $\frac{2a_2}{3}$

b)
$$-\frac{2a_2}{3}*$$

- c) a_2
- d) Zero
- 15) A body traveling along a straight line traversed one –third of the total distance with a velocity $4ms^{-1}$. The remaining part of the distance was covered with a velocity $2ms^{-1}$ for half the time and with velocity $6ms^{-1}$ for the other half of time. The mean velocity averaged over the whole time of motion is
 - a) $5ms^{-1}$

- b) $4ms^{-1}*$
- c) $4.5ms^{-1}$
- d) $3.5ms^{-1}$
- 16) The displacement of a particle moving in a straight line is described by the relation, $s = 6 + 12t - 2t^2$, here s is in meter and t in second. The distance covered by particle in first 5 s is
 - a) 20 m
 - b) 32 m
 - c) 24 m
 - d) 26 m *
- 17) A parachutist jumps from an aeroplane moving with a velocity of u. Parachute opens and accelerates downwards with $2ms^{-1}$. He reaches the ground with velocity $4ms^{-1}$. What distance does the parachutist covered in the air?
 - a) 1.5 m
 - b) 2.5 m
 - c) 4 m *
 - d) None of these
- 18) A car accelerates from rest at constant rate for first 10 s and covers a distance x. It covers a distance y in next 10 s at the same acceleration. Which of the following is true?
 - a) x = 3y
 - b) $y = 3x^*$
 - c) x = y
 - d) y = 2x
- 19) Assertion Velocity –time graph for an object in a uniform motion along a straight line is parallel to the time axis.

Reason : in uniform motion of an object velocity increases as the square of time elapsed

- a) If both Assertion and Reason are true and the Reason is the correct explanation of the Assertion
- b) If both Assertion and Reason are true but the Reason is not the correct explanation of the Assertion
- c) If assertion is true but Reason is false *
- d) If both Assertion and Reason are false
- 20) Assertion When a body is dropped or thrown horizontally from the same height, it would reach the ground at the same time.

Reason Horizontal velocity has no effect on the vertical directions.

- a) If both Assertion and Reason are true and the Reason is the correct explanation of the Assertion *
- b) If both Assertion and Reason are true but the Reason is not the correct explanation of the Assertion
- c) If assertion is true but Reason is false
- d) If both Assertion and Reason are false
- 21) A balloon rises from rest with a constant acceleration g. A stone is released from it when it has risen to height h. The time taken by the stone to reach the ground is

a)
$$4\sqrt{\frac{h}{g}}$$

b)
$$2\sqrt{\frac{h}{g}} *$$

c)
$$\sqrt{\frac{2h}{g}}$$

d) $\sqrt{\frac{g}{h}}$

- 22) A particle moves along with x-axis. The position x of particle with respect to time t from origin is given by $x = b_0 + b_1 t + b_2 t^2$. The acceleration of particle is
 - a) b_0
 - b) *b*₁
 - c) b_2
 - d) 2*b*₂*
- 23) A particle has initial velocity $(3\hat{i} + 4\hat{j})$ and

acceleration $(0.1\hat{i} + 0.3\hat{j})$. Its speed after 10 s is

- a) 7 units
- b) $7\sqrt{2}$ units *
- c) 8.5 units
- d) 10 units
- 24) A body is moving with velocity 30 m/s towardseast. After 10 s its velocity becomes 40 m/stowards north. The average acceleration of body is
 - a) $7 m/s^2$
 - b) $\sqrt{7}m/s^2$
 - c) $5m/s^2 *$
 - d) $1m/s^2$
- 25) With what speed should a body be thrown upwards so that the distances traversed in 5th second and 6th second are equal :

- a) $58.4ms^{-1}$
- b) $49ms^{-1}*$
- c) $\sqrt{98}ms^{-1}$
- d) $98ms^{-1}$
- 26) A ball is released from the top of a tower of height'h' meter. It takes T seconds to reach the ground.what is the position of the ball in T/3 seconds :
 - a) h/9 meter from the ground
 - b) 7h/9meter from the ground
 - c) 8h/9 meter from the ground *
 - d) 17h/18 meter from the ground
- 27) When a ball is thrown up vertically with velocity V_0 . It reaches a maximum height h. If one wishes to triple the maximum height, then the ball should be thrown with velocity
 - a) $\sqrt{3}v_0^*$
 - b) $3v_0$
 - c) $9v_0$
 - d) $3/2v_0$
- 28) A car moves at 80 kmh^{-1} in the first half of total time of motion and at 40 kmh^{-1} in the later half. Its average speed is
 - a) 60 kmh^{-1} *
 - b) $30 \, kmh^{-1}$
 - c) 120 kmh^{-1}
 - d) None of these
- 29) A bullet loses 1/20 of its velocity after penetrating a plank. How many planks are required to stop the bullet?

- a) 6
- b) 9*
- c) 11
- d) 13
- 30) Consider a rubber ball freely feeling from a height h = 4.9 m on to a horizontal elastic plate. Assume that the duration of the collision is negligible and the collision with the plate is totally elastic. Then the velocity as a function of time and the height as a function of time and the height as a function of time will be :

a)

